CUSTOMER NOTIFICATION

SUD-DT-04-0133

March 12, 2004

Koji Nishibayashi, Senior System Integrator Microcomputer Group 2nd Solutions Division Solutions Operations Unit NEC Electronics Corporation

CP(K), O

QB-V850EIA4

(IECUBE for V850ES/IK1, V850E/IA3, V850E/IA4)

Preliminary User's Manual

Target Device: V850ES/IK1 V850E/IA3 V850E/IA4

V850 Series, V850ES/IK1, V850E/IA3, V850E/IA4, and IECUBE are trademarks of NEC Electronics Corporation.

Windows is either a trademark or a registered trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Corporation. NEC Electronics Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Electronics Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device.
 - No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics Corporation or of others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product, operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Electronics Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.

INTRODUCTION

- Target Readers
 This manual is intended for users who design and develop application systems using the

 V850ES/IK1, V850E/IA3, or V850E/IA4.
- Purpose
 The purpose of this manual is to describe the proper operation of the QB-V850EIA4, and its basic specifications.

Organization This manual is broadly divided into the following parts.

- Overview
- Setup procedure
- Cautions

How to Read This Manual

It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers. This manual explains the basic setup procedure, so read this document before using the QB-V850EIA4.

To learn about the basic specifications and operation methods.

 \rightarrow Read this manual in the order of the CONTENTS.

To learn about software settings such as operation methods and command functions.

 \rightarrow Read the user's manual of the debugger that is used.

Conventions

Note:	Footnote for iten	n marked with Note in the text.	
Caution:	Information requ	iring particular attention.	
Remark:	Supplementary i	nformation.	
Numeral representation:	Binary	xxxx or xxxxB	
	Decimal	xxxx	
	Hexadecimal	xxxxH	
Units for representing pov	wers of 2 (address	s space or memory space):	
	K (kilo): 2 ¹⁰ = 1,024		
	M (mega): 2 ²⁰ = 1,024 ²		

Terminology

The meanings of terms used in this manual are listed below.

Term	Meaning
Target device	Refers to the device targeted for emulation.
Target system	Refers to the system targeted for debugging.
	This includes the target program and the hardware created by the user.
	In the narrow sense, it means hardware only.

Related Document When using this manual, refer to the following manuals.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

• Documents related to development tools (user's manuals)

Document Name	Document Number	
QB-V850EIA4		This manual
CA850 (Ver.2.50 or later)	Operation	U16053E
[C Compiler package]	C Language	U16054E
	PM plus	U16055E
	Assembly Language	U16042E
ID850QB (Ver.2.80) [Integrated debugger]	Operation Windows-Based	U16973E
SM plus (Ver.1.00) [System simulator]	Operation Windows-Based	U16906E
RX850 [Real-time OS]	Basics	U13430E
	Installation	U13410E
RX850 Pro [Real-time OS]	Fundamental	U13773E
	Installation	U13774E
RD850 [Task debugger]	Windows-Based	U13737E
RD850 Pro [Task debugger]	Windows-Based	U13916E
AZ850 [System performance analyzer]		U14410E

General cautions on handling this product

- 1. NEC Electronics' warranty does not cover the following cases:
- When the QB-V850EIA4 is disassembled, reconstructed, or modified by the user
- · When the QB-V850EIA4 receives a heavy shock such as being dropped or falling down
- When the QB-V850EIA4 is used with excessive voltage or is stored outside the guaranteed temperature range or guaranteed humidity range
- · When power is applied while the AC adapter, USB interface cable, or target system is not connected securely
- · When the AC adapter cable, USB interface cable, or extension probe is excessively twisted or stretched
- When an AC adapter other than the one supplied with the QB-V850EIA4 is used
- When water is spilled on the QB-V850EIA4
- 2. Cautions on safe use
- The QB-V850EIA4 heats up (to approx. 50 to 60°C) when it operates for a long time. Take care not to receive injuries such as burns from a rise in the temperature.
- Be very careful to avoid electric shocks. There is risk of electric shock if the product is used as described in item 1 above.

CONTENTS

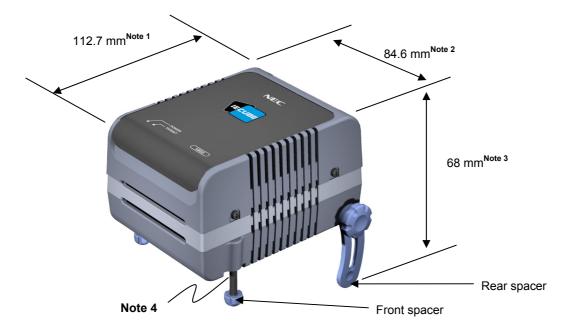
INTRODU	CTION	. 3
CHAPTER	R 1 OVERVIEW	. 8
1.1 Ha	ardware Specifications	. 9
1.2 Sy	stem Specifications	10
1.3 Sy	stem Configuration	11
1.4 Pa	cking Contents	13
CHAPTER	2 SETUP PROCEDURE	14
2.1 Na	ames and Functions of Hardware	15
2.2 Re	emoving Acrylic Board	17
2.3 CI	ock Settings	17
2.3.1	Overview of clock settings	17
2.3.2	How to set clock	18
2.3.3	How to change resonator	19
2.3.4	How to mount oscillator	20
2.4 Ta	rget Device Settings	21
2.5 Sc	oftware Setup	22
2.5.1	When ID850QB is used	22
2.5.2		
2.6 M	ounting and Connecting Connectors	22
2.6.1	Mounting target connector (TC) on target system	22
2.6.2	Inserting exchange adapter (EA) in TC	23
2.6.3		
2.7 Co	onnecting IECUBE to Target System	24
2.7.1	Connection without using extension probe (QB-144-EP-01S)	24
2.7.2	Connection using extension probe (QB-144-EP-01S)	25
2.8 Co	onnecting USB Interface Cable and AC Adapter	29
2.9 Pc	ower Application/Shutdown	29
CHAPTER	R 3 LIST OF FACTORY SETTINGS	30
CHAPTER	R 4 DIFFERENCES BETWEEN TARGET DEVICES AND	
	TARGET INTERFACE CIRCUITS	31
CHAPTER	R 5 NOTES ON TARGET SYSTEM DESIGN	46
5.1 W	hen Extension Probe Is Not Used	46
5.1.1	V850E/IA4 (100-pin GF package)	46
5.1.2	V850E/IA4 (100-pin GC package)	47
5.1.3	V850E/IA3 (80-pin GC package)	48
5.1.4	V850ES/IK1 (64-pin GC package)	48
5.2 W	hen Extension Probe Is Used	50
5.2.1	V850E/IA4 (100-pin GF package)	50
5.2.2	V850E/IA4 (100-pin GC package)	50

5.2	2.3 V850E/IA3 (80-pin GC package)	. 51
5.2	2.4 V850ES/IK1 (64-pin GC package)	. 51
CHAPT	ER 6 CONNECTOR PROBE PACKAGE DRAWINGS	. 51
6.1	Target Connector	52
6.2	Foot Patterns of Target Connectors	. 53
6.3	Exchange Adapter	55
6.4	Mounting Sdapter	56
6.5	Check Pin Adapter	57
6.6	Spacer Adapter	59
6.7	Extension Probe	60

CHAPTER 1 OVERVIEW

The QB-V850EIA4 (IECUBE) is an in-circuit emulator used to emulate the V850ES/IK1, V850E/IA3, and V850E/IA4. By using IECUBE, hardware and software can be debugged efficiently in system development using the V850ES/IK1, V850E/IA3, or V850E/IA4.

In this manual, the basic setup procedure, hardware specifications, system specifications, and switch settings are described.


This document describes the QB-V850EIA4 as IECUBE.

1.1 Hardware Specifications

	Item		Specifications	
Target device		V850ES/IK1, V850E/IA3, V850E/IA4		
Target system i	nterface voltage (unit: V)	V850ES/IK1	V _{DD} = EV _{DD} = 4.5 to 5.5 V	
			AV _{DD} = 4.5 to 5.5 V	
			Vss = EVss = AVss = 0 V	
		V850E/IA3	$V_{DD} = CV_{DD} = 2.3$ to 2.7 V	
		V850E/IA4	EV _{DD} = AV _{DD} = 4.5 to 5.5 V	
			Vss = EVss = CVss = AVss = 0 V	
Maximum opera	Maximum operating frequency		When emulating V850E/IA3 or V850E/IA4: 64 MHz	
			When emulating V850ES/IK1: 32 MHz	
Operating temperature range		0 to 40°C (with	0 to 40°C (without condensation)	
Storage temperature range		–15 to 60°C (without condensation)		
Package dimensions		See below.		
Power AC adapter for IECUBE		15 V, 1 A		
consumption Target system power		Lower than that of target device		
	supply			
Weight	Weight		412 g	
Host interface		USB interface (1.1 and 2.0)		

Table 1-1-1. QB-V850EIA4 Hardware Specifications

Notes 1. Not including projection of power supply switch.

- 2. Including projection of screw for fixing rear spacer
- 3. Shortest dimension for the rear spacer (98 mm max.)
- 4. The front spacer dimension is variable between 20 mm (max.) and 5 mm (min.)

1.2 System Specifications

The system specifications of the QB-V850EIA4 are shown below.

	Item	Specifications	
Emulation memory	Internal ROM	1 MB max.	
capacity	Internal RAM	60 KB max.	
	External memory	Optional (under development)	
Program execution function	Real-time execution function	Go, Start From Here, Go & Go, Come Here, Restart, Return Out	
	Non-real-time execution function	Step In, Next Over, Slow Motion	
Break function	Hardware break	Execution: 10 points Access: 6 points	
	Software break	2000 points	
	Fail-safe break	Non-map, I/O illegal, write protect	
	Other	Trace full break, Manual Break, Timer Over Flow Break	
Trace function	Trace data type	Branch source PC, branch destination PC, all PCs, all execution data, access data, access address, R/W status, time stamp, DMA point (start/end)	
	Trace mode	Speed Priority, Trace Priority	
	Trace event	Delay trigger, section, qualify	
	Memory capacity	256 frames	
Real-time RAM monitor function		256 bytes × 8 points	
Time measurement	Measurement clock	Measurement-dedicated clock or CPU clock	
function	Measurement target	Program execution start to end Start event to end event	
	Maximum measurement time	About 195 hours (when measurement-dedicated clock is used)	
	Minimum resolution	20 ns	
	Number of timers used for measurement	8	
	Measurement result	Execution time (execution start to end) Max., min., Average, pass count (between events)	
	Other	Timer overflow break function (1 point)	
Coverage function		Optional (under development)	
Other functions		Mapping function, event function, register manipulation	
		function, memory manipulation function	

Caution Some of the functions may not be supported, depending on the debugger used.

1.3 System Configuration

The system configuration when connecting the QB-V850ESSX to a PC (PC-9800 series or PC/AT compatible) is shown below. Connection is possible without optional products.

Connectors <6> to <11> vary depending on the target device to be emulated.

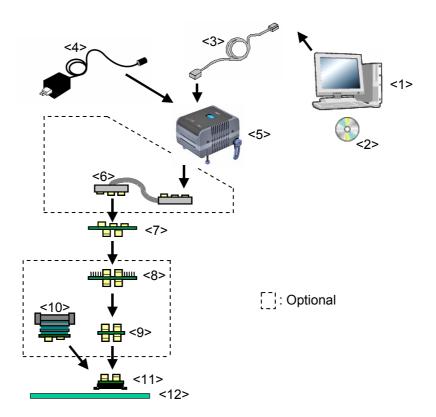


Figure 1-3-1. System Configuration

<1> Host machine:	PC-9821 series or IBM PC/AT compatible machine can be used
<2> ID850QB Disk, Accessory Disk ^{Note 1} :	Includes debugger, USB driver, manual, etc.
<3> USB interface cable:	Cable used to connect the host machine and the QB-V850EIA4
<4> AC adapter:	Voltages from 100 to 240 V can be used by exchanging the AC plug
<5> QB-V850EIA4:	This product
<6> Extension probe (coaxial type) (option	nal)
<7> Exchange adapter:	Adapter used to convert pins
<8> Check pin adapter (optional):	Adapter used for monitoring waveforms using an oscilloscope ^{Note 2}
<9> Spacer adapter (optional):	Adapter used to adjust the height ^{Note 2}
<10> Mounting adapter (optional):	Adapter used to mount the target device in the socket
<11> Target connector:	Connector used to solder the emulator on the target system
<12> Target system	

Notes 1. Download the device from the NEC Electronics web site. URL: http://www.necel.com/micro/ods/jpn/index.html

2. <8> and <9> can also be used in the reverse position.

No.	Name	Target Device to Be Emulated			
		V850ES/IK1	V850E/IA3	V850E/IA4	V850E/IA4
		(64-Pin GC)	(80-Pin GC)	(100-Pin GC)	(100-Pin GF)
<6>	Extension probe (coaxial type)		QB-144-EP-01S	(sold separately)	
<7>	Exchange adapter	QB-64GC-EA-01S	QB-80GC-EA-01S	QB-100GC-EA-02S	QB-100GF-EA-02S
		(sold	(sold	(sold	(sold
		separately) ^{Note}	separately) ^{Note}	separately) ^{Note}	separately) ^{Note}
<8>	Check pin adapter	QB-64-CA-01S	QB-80-CA-01S	QB-100	-CA-01S
		(sold separately)	(sold separately)	(sold se	parately)
<9>	Spacer adapter	QB-64-SA-01S	QB-80-SA-01S	QB-100	-SA-01S
		(sold separately)	(sold separately)	(sold se	parately)
<10>	Mounting adapter	QB-64GC-MA-01S	QB-08GC-MA-01S	QB-100GC-MA-01S	QB-100GF-MA-01S
		(sold separately)	(sold separately)	(sold separately)	(sold separately)
<11>	Target connector	QB-64GC-TC-01S	QB-08GC-TC-01S	QB-100GC-TC-01S	QB-100GF-TC-01S
		(sold separately) ^{Note}	(sold separately) ^{Note}	(sold separately) ^{Note}	(sold separately) ^{Note}

 Table 1-3-1.
 List of Probes and Connectors for Each Target Device

Note The accessories included with this product are as shown below.

• When QB-V850EIA4-ZZZ is ordered:

The exchange adapter and target connector are not included.

• When QB-V850EIA4-S100GC is ordered:

The QB-100GC-EA-02S and QB-100GC-TC-01S are included.

• When QB-V850EIA4-S100GF is ordered:

The QB-100GF-EA-02S and QB-100GF-TC-01S are included.

When QB-V850EIA4-S80GC is ordered:

The QB-80GC-EA-01S and QB-80GC-TC-01S are included.

• When QB-V850EIA4-S64GC is ordered:

The QB-64GC-EA-01S and QB-64GC-TC-01S are included.

1.4 Packing Contents

The packing box of the QB-V850EIA4 contains the following. Make sure that these items are included.

- ◆ Items included with QB-V850EIA4-ZZZ
 - (1) QB-V850EIA4
 - (2) AC adapter
 - (3) USB interface cable
 - (4) ID850QB Disk (CD-ROM)
 - (5) Accessory Disk (CD-ROM)
 - (6) IECUBE setup manual (Japanese/English)
 - (7) User registration card/software agreement
 - (8) PG-FPL (Flashpro Lite)
 - (9) Probe holder
 - (10) Parts board (for clock)
- Items included with QB-V850EIA4-S100GC
 - (1) to (10)
 - (11) Exchange adapter QB-100GC-EA-02S
 - (12) Target connector QB-100GC-TC-01S
- Items included with QB-V850EIA4-S100GF
 - (1) to (10)
 - (11) Exchange adapter QB-100GF-EA-02S
 - (12) Target connector QB-100GF-TC-01S
- Items included with QB-V850EIA4-S80GC
 - (1) to (10)
 - (11) Exchange adapter QB-80GC-EA-01S
 - (12) Target connector QB-80GC-TC-01S
- Items included with QB-V850EIA4-S64GC
 - (1) to (10)
 - (11) Exchange adapter QB-64GC-EA-01S
 - (12) Target connector QB-64GC-TC-01S

CHAPTER 2 SETUP PROCEDURE

This chapter describes the procedure for setting up the QB-V850EIA4.

Perform setup using the following procedure.

See 2.1 Names and Functions of Hardware for the positions of jumpers and clocks.

Clock settings

An 8 MHz resonator is mounted at shipment.

There is no need to change the setting when an 8 MHz resonator can be used without problem.

See 2.2 Removing Acrylic Board and 2.3 Clock Settings when changing the resonator.

Target device setting

It is assumed that the IECUBE target device is the V850E/IA3 or V850E/IA4 at shipment.

There is no need to change the setting when emulating the V850E/IA3 or V850E/IA4.

See 2.2 Removing Acrylic Board and 2.4 Target Device Settings when using as the V850ES/IK1.

Software setup

See 2.5 Software Setup.

Mounting and connecting connectors

See 2.6 Mounting and Connecting Connectors.

Connecting IECUBE to target system

See 2.7 Connecting IECUBE to target system.

- When extension probe (QB-144-EP-01S) is used: See 2.7.1.
- When extension probe (QB-144-EP-01S) is not used: See 2.7.2.

Connecting USB interface cable and AC adapter

See 2.8 Connecting USB Interface Cable and AC Adapter.

Power application/shutdown

See 2.9 Power application/shutdown.

2.1 Names and Functions of Hardware

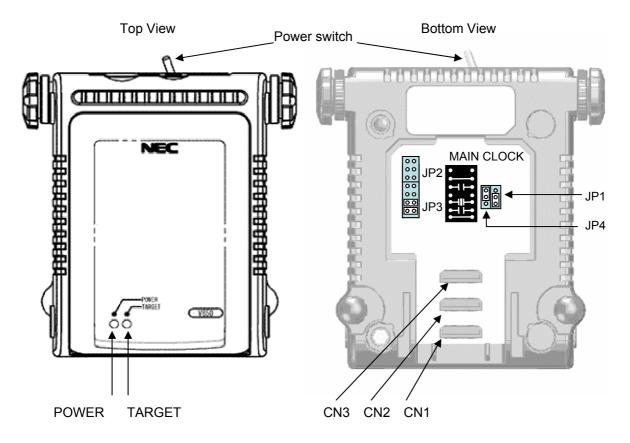


Figure 2-1-1. Names and Functions in QB-V850EIA4

(1) CN1, CN2, CN3

These are connectors used to connect the exchange adapter or extension probe.

(2) MAIN CLOCK (for clock)

This is a socket used for mounting the main clock.

An 8 MHz resonator and capacitors, etc., that configure an oscillator circuit are mounted at shipment.

(See 2.3 Clock Settings for details.)

(3) JP1

This is a jumper whose setting should be changed in accordance with operating frequency used.

It is 1-2 shorted at shipment.

(See 2.3 Clock Settings for details.)

(4) JP2

This is a jumper used for shipment inspection. Use the default setting (all switches are left open).

(5) JP3

This is a jumper whose setting should be changed in accordance with the clock mounted in the MAIN CLOCK block. It is 1-2 shorted, 3-4 shorted, 5-6 open, and 7-8 open at shipment.

(See 2.3 Clock Settings for details.)

(6) JP4

This is a jumper whose setting should be changed in accordance with the target device used.

It is 2-3 shorted at shipment.

(See 2.4 Target Device Settings for details.)

(7) POWER (red LED)

This is an LED that indicates whether or not the power to IECUBE is on.

LED Status	IECUBE Status
Lit	The power supply is on.
Extinguished	The power supply is off, or the AC adapter is not connected to IECUBE.
Blinking	An error has occurred internally. (Contact an NEC Electronics sales representative or
-	distributor.)

(8) TARGET (green LED)

This is an LED that indicates whether or not the power to the target system is on.

LED Status	Target System Status	
Lit	The power supply to the target system is on.	
Extinguished	The power supply to the target system is off, or the target system is not connected.	

(9) Power supply switch

This is a power switch for IECUBE. This switch is turned off at shipment.

2.2 Removing Acrylic Board

Remove the acrylic board on the bottom surface of IECUBE before changing the settings of jumpers or clocks. The acrylic board can be removed by pulling it up.

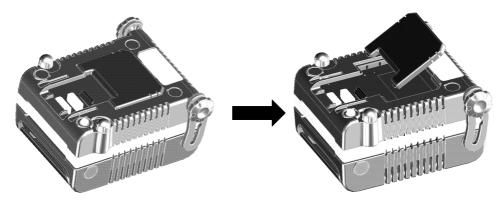


Figure 2-2-1. Removing Acrylic Board

2.3 Clock Settings

2.3.1 Overview of clock settings

Five methods are available for setting the clock.

See 2.3.2 How to set clock for details.

- (1) Use the 8 MHz resonator mounted on IECUBE (factory setting).
- (2) Mount and use a resonator with a frequency of more than 6.875 MHz but not exceeding 8 MHz on IECUBE.
- (3) Mount and use a resonator with a frequency of more than 4 MHz but not exceeding 6.875 MHz on IECUBE.
- (4) Mount and use an oscillator with a frequency of more than 6.875 MHz but not exceeding 8 MHz on IECUBE.
- (5) Mount and use an oscillator with a frequency of more than 4 MHz but not exceeding 6.875 MHz on IECUBE.
- IECUBE does not support clock input from the target system.
- Clock when emulating V850ES/IK1

Mount a clock with a frequency twice that actually used in the MAIN CLOCK block of IECUBE. When operating at 32 MHz, for example, mount an 8 MHz clock in the MAIN CLOCK block.

2.3.2 How to set clock

A list of hardware settings for when the clock is set is shown in Table 2-3-1.

		of Hardware Settings		
Clock to Be Used	MAIN CLOCK	JP1 Setting	State of PLLSIN Pin in V850E/IA3, V850E/IA4	JP3 Setting
Use the 8 MHz resonator mounted on IECUBE (factory setting).	8 9 10 11 12 13 14 (Factory setting)	3 2 1 1-2: Shorted (Factory setting)	High	8 0 0 7 6 0 0 5 4 0 0 3 2 0 1 7-8: Leave open 5-6: Leave open 3-4: Shorted 1-2: Shorted (Factory setting)
Mount a resonator with a frequency of more than 6.875 MHz but not exceeding 8 MHz on IECUBE and use it.	Use the supplied parts board.	3 2 1 1-2: Shorted (Factory setting)	High	8 0 0 7 6 0 0 5 4 0 0 3 2 0 0 1 7-8: Leave open 5-6: Leave open 3-4: Shorted 1-2: Shorted (Factory setting)
Mount a resonator with a frequency of more than 4 MHz but not exceeding 6.875 MHz on IECUBE and use it.	8 9 10 11 12 13 14 12 1 13 14 1 1 1 1 1 1 1 1 1 1 1 1 1	3 0 2 0 1 0 2-3: Shorted	Low	8 0 0 6 0 0 7 6 0 0 5 4 0 0 3 2 0 0 1 7-8: Leave open 3-6: Leave open 3-4: Shorted 1-2: Shorted (Factory setting)
Mount an oscillator with a frequency of more than 6.875 MHz but not exceeding 8 MHz on IECUBE and use it.	Use the 8-pin or 14-pin oscillator for 5 V specification.	3 2 1 1-2: Shorted (Factory setting)	High	800 600 5 400 3 200 1 7-8: Shorted 5-6: Shorted 3-4: Leave open 1-2: Leave open
Mount an oscillator with a frequency of more than 4 MHz but not exceeding 6.875 MHz on IECUBE and use it.	Use the 8-pin or 14-pin oscillator for 5 V specification.	3 0 2 0 1 0 2-3: Shorted	Low	8 00 7 6 00 5 4 0 0 3 2 0 0 1 7-8: Shorted 5-6: Shorted 3-4: Leave open 1-2: Leave open

Table 2-3-1	List of Hardware Se	ttings When Clock Is Set
1 able 2-3-1.	LISC OF HATUWATE SE	tungs when clock is set

* Settings other than above are prohibited.

2.3.3 How to change resonator

- (1) Remove the parts board mounted on the MAIN CLOCK block before changing the resonator.
- (2) Solder-mount the resonator and capacitor on the parts board supplied with IECUBE as follows.
 - Pin 1-14: Must be shorted.
 - Pin 2-13: Mount the capacitor.
 - Pin 3-12: Mount the resonator.
 - Pin 4-11: Leave open.
 - Pin 5-10: Mount the capacitor.
 - Pin 6-9: Must be shorted.
 - Pin 7-8: Leave open.
- (3) Insert parts board in the IECUBE.

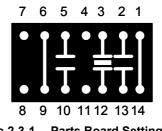


Figure 2-3-1. Parts Board Setting

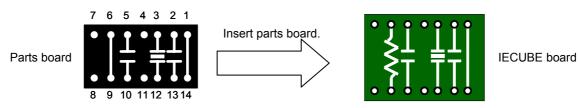
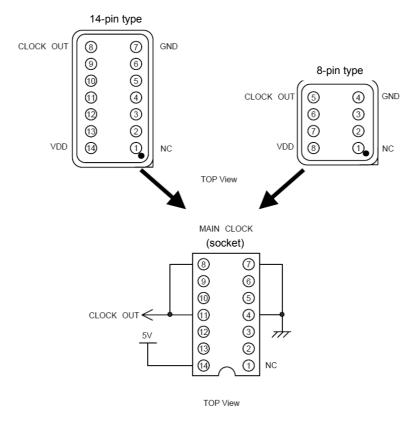



Figure 2-3-2. Inserting Parts Board in IECUBE

2.3.4 How to mount oscillator

(1) Remove the parts board mounted in the MAIN CLOCK block before replacing the clock with the oscillator.

(2) Mount the oscillator in the socket on the MAIN CLOCK block as shown below.

Figure 2-3-3. Mounting MAIN CLOCK

When mounting an 8-pin type crystal oscillator, align the position of pin 1 of the oscillator to that of the MAIN CLOCK socket, and the position of pin 8 of the oscillator to the position of pin 14 of the MAIN CLOCK socket.

2.4 Target Device Settings

The JP4 setting varies depending on the target device.

When emulating V850ES/IK1: 1-2 shorted

When emulating V850E/IA3, V850E/IA4: 2-3 shorted (factory setting)

Settings other than above are prohibited.

JP4
1 2 3
Set 1-2 shorted.

Figure 2-4-1. JP4 Setting When Using V850ES/IK1

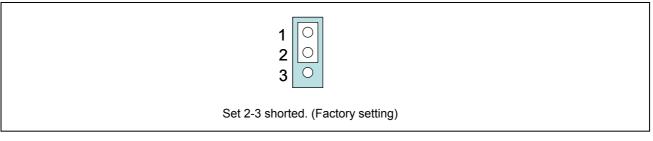


Figure 2-4-2. JP4 Setting When Using V850E/IA3 or V850E/IA4

2.5 Software Setup

2.5.1 When ID850QB debugger is used

See the document "ID850QB Operating Precautions" attached to the ID850QB debugger for details.

2.5.2 When a debugger other than ID850QB (such as Multi) is used

See the user's manual of the debugger to be used and the IECUBE Setup Manual.

2.6 Mounting and Connecting Connectors

This section explains how to connect IECUBE and the target system.

Be sure to turn off the power supply to IECUBE and the target system before connection.

The following symbols are used in this section.

- TC: Target connector
- EA: Exchange adapter
- MA: Mounting adapter
- CA: Check pin adapter
- SA: Spacer adapter

2.6.1 Mounting target connector (TC) on target system

- (1) Apply cream solder to the foot pattern for mounting the IC on the target system.
- (2) TC has a cylindrical projection in the center of the underside (Figure 2-6-1). Apply a two-component hardening type epoxy adhesive agent (a type that hardens in 15 to 30 minutes) sparingly to the underside of the projection to temporarily secure the connector at the specified location on the target system. Make sure that the position of pin 1 of the connector (where the corner is cut) matches the position of pin 1 on the target board.
- (3) TC mounting conditions
 - (a) To mount TC by reflow: $245^{\circ}C \times 20$ seconds max. (heating)
 - (b) To mount TC by manual soldering: $320^{\circ}C \times 5$ seconds max. (per pin)

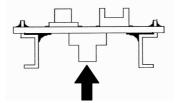


Figure 2-6-1. TC Projection Diagram

(4) Note on flux splashing

The flux splashing that takes place while the connector is being mounted often results in defective conduction. Be sure to cover the upper part of the connector with aluminum foil. **Do not clean the flux because the structure of the connector easily allows cleaner to enter.**

2.6.2 Inserting exchange adapter (EA) in TC

- (1) Insert EA, MA, CA, or SA in target connector (TC) so that the position of pin 1 (where the corner is cut) on each board matches.
 - (a) When TC is inserted or removed, hold TC with your fingers so that no excessive force is applied to the connector.
 - (b) Remove or insert the adapter in the correct direction. (Figure 2-6-2)

Use a bamboo spit or similar object as a tool to remove the connector. Insert the tool between TC and EA and remove TC in the correction direction as shown in Figure 2-6-2. If force is applied to the connector in the wrong direction, the connector will be damaged.

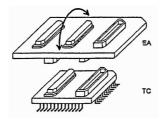


Figure 2-6-2. How to Insert/Remove EA and TC

2.6.3 General cautions on using TC, EA, MA, CA, and SA

- (1) Causes of faulty contact of connector
 - (a) If flux gets inside TC when it is mounted

Thoroughly clean the flux with a solvent such as alcohol. Cleaning must be performed at least 5 to 6 times. If conduction is still not stable, repeat cleaning.

(b) If waste gets inside the connector

If waste, such as threads, gets inside the connector, defective conduction occurs. Remove any waste with a brush.

(c) Cautions on using CA and SA

When CA and SA are inserted, a very small amount of delay and capacitance occur in the signal propagation. Thoroughly evaluate these points after CA and SA are connected to the target system.

- (2) Note on inserting or removing connector
 - (a) Be sure to hold the lower (mating) connector or board with your fingers when inserting or removing the connector.
 - (b) Be sure to insert or remove the connector in the correct direction (so that the positions match).If the connector is inserted in a position that does not match the board direction, the connector may be damaged.
 - (c) When disconnecting the connector, use a thin bamboo or wooded stick as a leverage to protect the socket from being damaged. Do not remove the connector all at once, but do so little by little, shifting the leverage from one place to another.

If only a metallic object such as a screwdriver is available as a leverage, wrap its tip in a soft cloth.

2.7 Connecting IECUBE to Target System

2.7.1 Connection without using extension probe (QB-144-EP-01S)

IECUBE can be connected to the target system without using the extension probe.

When connecting IECUBE and the target system, adjust the height of IECUBE using the rear spacer so that no

stress is applied to the exchange adapter and target connector.

In addition, take care to maintain insulation with the target system.

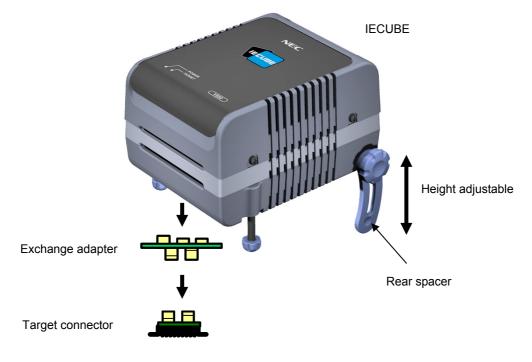


Figure 2-7-1. Connection Without Using Extension Probe

2.7.2 Connection using extension probe (QB-144-EP-01S)

When using the extension probe (QB-144-EP-01S), connect IECUBE and the target system using the following procedure.

(1) Connecting probe holder

Use the probe holder (included with IECUBE) for connecting the extension probe to IECUBE. How to connect is shown below.

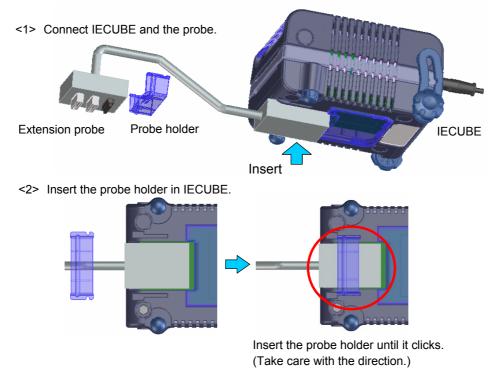


Figure 2-7-2. How to Use Probe Holder

(2) Connecting extension probe GND lines

The extension probe has three GND lines. Connect these lines to IECUBE and the target system using the following procedure.

- <1> Fix a GND line of the extension probe to the nut on the bottom surface of IECUBE using a #0 or #1 precision cross-headed screwdriver. (Connection of **A** and **B** in Figure 2-7-3)
- <2> Insert the connector on the top surface of the extension probe in the connector at the bottom opening of IECUBE from the lower side. Take care with the direction. (Connection of **C** and IECUBE in Figure 2-7-3)

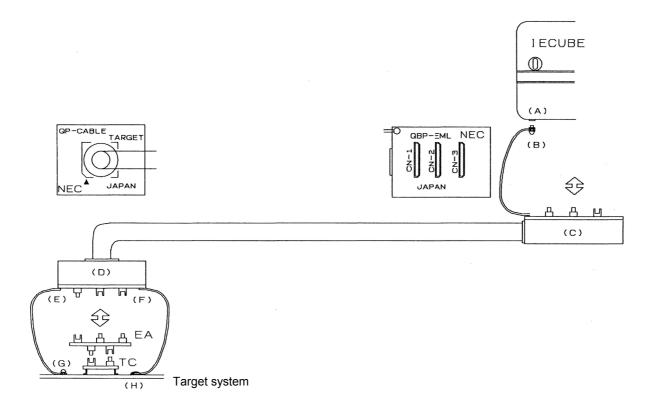


Figure 2-7-3. Connection of GND Lines

- <3> Connect the exchange adapter and extension probe to the target connector.
- <4> Connect two GND lines of the extension probe on the target system side to the GND block of the target system. If the pin or screw is fixed on the GND block of the target system, remove the transparent pin cover at the top of the GND line and fix the Y-branch pin of the GND line to the target system (**G** in Figure 2-7-3). In the same manner, if the GND pad on the target system is exposed, fix the Y-branch pin to the pad on the target system by soldering (**H** in Figure 2-7-3). (Recommended iron temperature: 300°C)
- <5> If there is only one GND connector on the target system, connect one side and cut off the other GND lines using nippers, or leave it as is without removing the pin cover.

<6> The length of the GND line shank (insulation block) is approximately 60 mm. Therefore, as shown in Figure 2-7-4, at least one connectable GND is necessary within a radius of approximately 60 mm from the three locations on the extension probe at which the target system is connected. The GND lines on the emulation probe are soldered at the position of J and K in Figure 2-7-4. When soldering the GND line at the position of L, remove a GND line soldered at J or K and solder it at L.

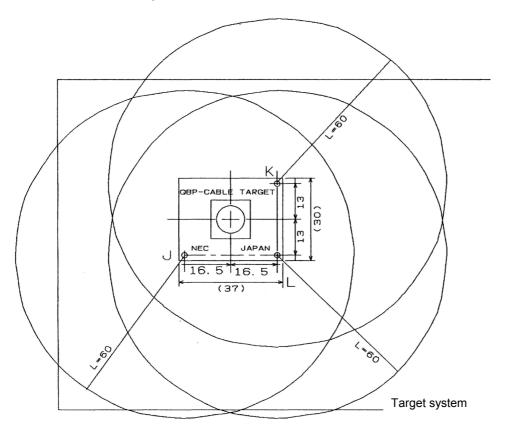


Figure 2-7-4. Location at Which GND Line Can Be Connected

(3) Maintaining insulation

When IECUBE and the target system are connected using the extension probe, adjust the height of IECUBE using the front spacer and rear spacer in order to maintain insulation with the target system.

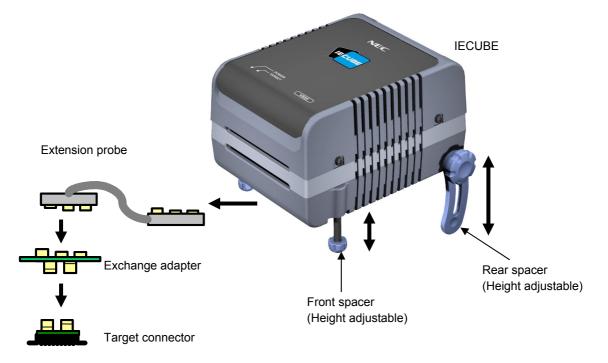


Figure 2-7-5. Connection When Using Extension Probe

(4) Cautions on using extension probe

Note the following points when using the extension probe.

- Be careful so that stress from the extension probe is not applied to the target connector. Hold the exchange adapter with your fingers when removing it so that no stress is applied to the target connector.
- Be sure to connect the GND line of the extension probe to IECUBE and the target system; otherwise the impedance of the cable becomes unstable, which may cause degradation of the signal transmission characteristics or distortion of the output waveform with respect to the input waveform.
- If the external bus interface is used when the extension probe is used, increase the data wait by one. (Increase the value set to the DWC register by one.)

2.8 Connecting USB Interface Cable and AC Adapter

Connect the computer and IECUBE using the USB interface cable supplied with IECUBE.

Insert the power supply connector on the rear side of IECUBE and insert the AC adapter plug supplied with IECUBE in the outlet. See **Figure 2-8-1** for the connector position of IECUBE.

The AC adapter can support voltages from 100 V to 240 V by exchanging the AC plug. A 100 V AC plug is mounted at shipment. To use IECUBE with 220 V or 240 V, exchange the AC plug for one that supports 220 V or 240 V (both included with IECUBE).

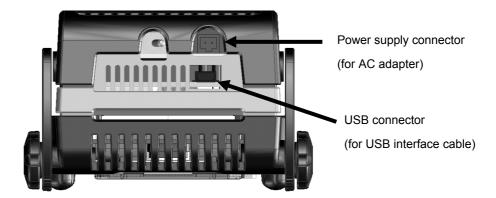


Figure 2-8-1. Connector Position

2.9 Power Application/Shutdown

Be sure follow the sequence shown below when activating or terminating the emulator; otherwise the target system or IECUBE may be damaged.

• When activating the emulator:

Apply power to IECUBE \rightarrow Apply power to the target system^{Note} \rightarrow Activates the debugger

• When terminating the emulator:

Terminate the debugger \rightarrow Shut down power to the target system \rightarrow Shut down power to IECUBE

Note This step is not required when the target system is not connected.

CHAPTER 3 LIST OF FACTORY SETTINGS

Item	Settings	Remark	
JP1	3 0 2 0 1 0	This switch is set to 1-2 shorted (when the operating frequency is higher than 6.875 MHz but not exceeding 8 MHz). When the operating frequency is higher than 4 MHz but not exceeding 6.875 MHz, change the setting to 2-3 shorted. See 2.3 Clock Settings for details.	
JP2	1 00 2 3 00 4 5 00 6	All pins are left open. Do not change this setting.	
JP3	8 00 7 6 00 5 4 00 3 2 00 1	This switch is set to 1-2 and 3-4 shorted, 5-6 and 7-8 open at shipment. See 2.3 Clock Settings for details.	
JP4	30 20 10	This switch is set to 2-3 shorted (when the target device is the V850E/IA3 or V850E/IA4). When the target device is the V850ES/IK1, change the setting to 1-2 shorted. See 2.4 Target Device Settings for details.	
MAIN CLOCK	8 9 10 11 12 13 14 12 1	An 8 MHz resonator is mounted at the 3-12 pins. A 27 pF capacitor is mounted at the 2-13 pins and 5-10 pins. The frequency can be changed by configuring an oscillator on the parts board supplied with IECUBE. See 2.3 Clock Settings for details.	
Power supply switch	ON OFF	This switch is turned off at shipment.	

Table 3-1-1. List of Factory Settings

CHAPTER 4 DIFFERENCES BETWEEN TARGET DEVICES AND TARGET INTERFACE CIRCUITS

This chapter describes the differences between the signal lines of the target device and these of the QB-V850EIA4's target interface circuit.

The target device consists of CMOS circuits, whereas the QB-V850EIA4's target interface circuit consists of emulation circuits such as the emulation CPU, TTL, and CMOS-IC.

At the time of debugging by connecting IECUBE and the target system, IECUBE performs the emulation as if the actual target device is operating on the target system, however, in reality, it is the IE system that performs the emulation, thus producing a slight differences.

The target interface of IECUBE is any of equivalent circuits A to K on the following pages.

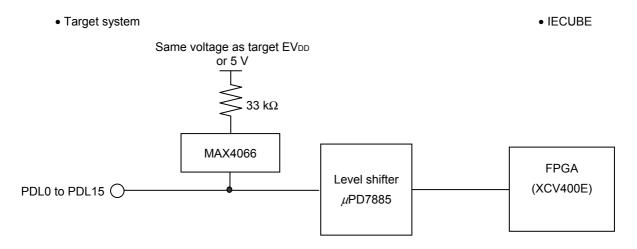
Tables 4-1 to 4-4 show each target interface connection.

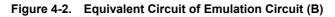
 • Target system
 • IECUBE

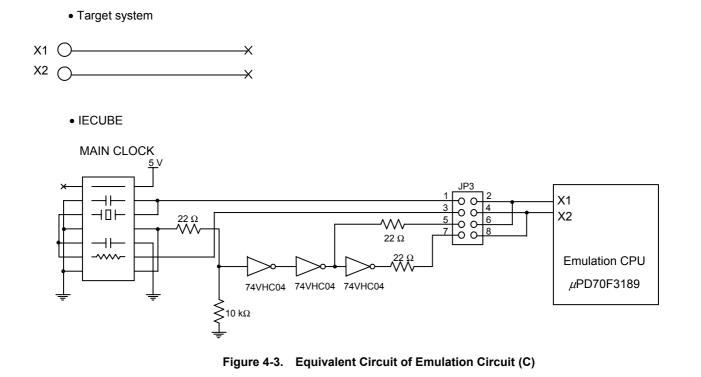
 ANI00 to ANI03
 P70/ANI20 to P77/ANI27

 CMPREF
 O

 ANI10 to ANI13
 Emulation CPU


 P00/INTP0/TOQ00FF to P07/INT07
 µPD70F3189


 P40/SIB0 to P44/TOP01/TIP01
 P20/TOQ1T1 to P27/TOP31


 P30/RXDAQ to P37/TCLR10
 P50/DDI/TIUD11/TO11 to P52/DMS/TCLR11

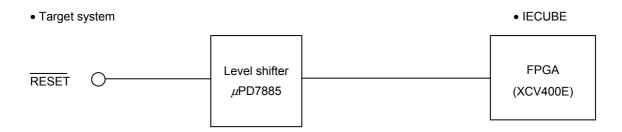
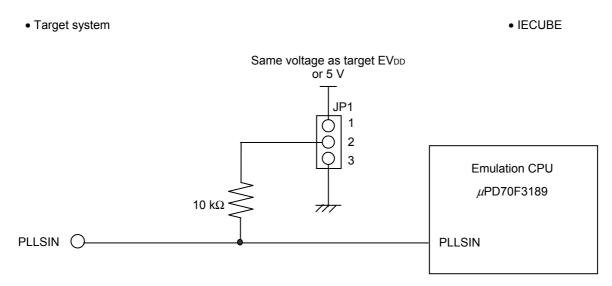

 P10/TOQ0T1/TIQ01/TOQ01 to P17/TOP21/TIP21

Figure 4-1. Equivalent Circuit of Emulation Circuit (A)



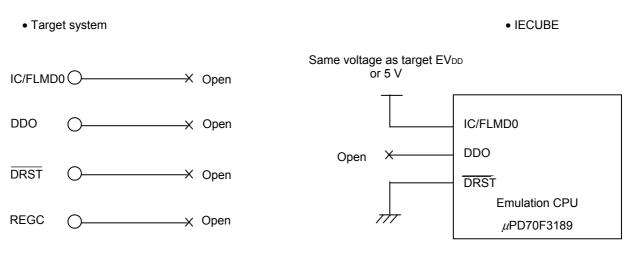


Figure 4-6. Equivalent Circuit of Emulation Circuit (F)

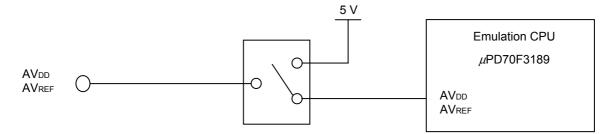


Figure 4-7. Equivalent Circuit of Emulation Circuit (G)



Figure 4-8. Equivalent Circuit of Emulation Circuit (H)

• Target system

IECUBE

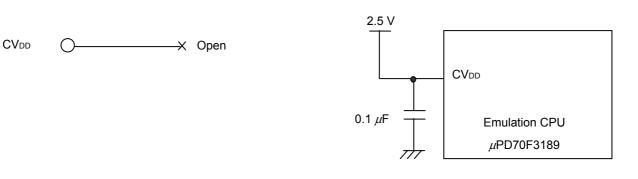
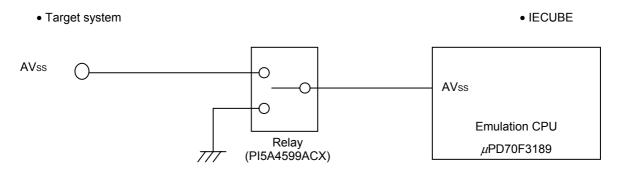



Figure 4-9. Equivalent Circuit of Emulation Circuit (I)

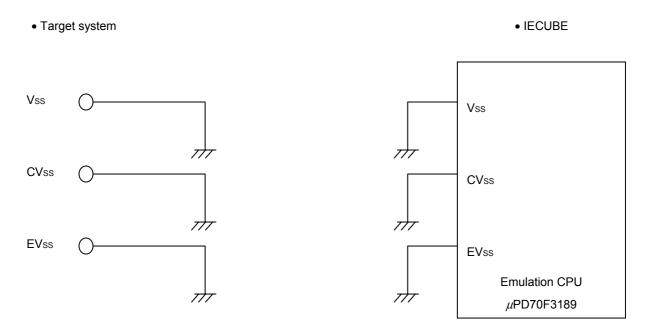


Figure 4-11. Equivalent Circuit of Emulation Circuit (K)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
1	EVdd	Equivalent circuit H
2	PDL8	Equivalent circuit B
3	PDL9	Equivalent circuit B
4	PDL10	Equivalent circuit B
5	PDL11	Equivalent circuit B
6	PDL12	Equivalent circuit B
7	PDL13	Equivalent circuit B
8	PDL14	Equivalent circuit B
9	PDL15	Equivalent circuit B
10	P50/DDI/TIUD11/TO11	Equivalent circuit A
11	P51/DCK/TCUD11	Equivalent circuit A
12	P52/DMS/TCLR11	Equivalent circuit A
13	Vss	Equivalent circuit K
14	Vdd	Equivalent circuit H
15	IC1/FLMD0	Equivalent circuit F
16	P10/TOQ0T1/TIQ01/TOQ01	Equivalent circuit A
17	P11/TOQ0B1/TIQ02/TOQ02	Equivalent circuit A
18	P12/TOQ0T2/TIQ03/TOQ03	Equivalent circuit A
19	EVss	Equivalent circuit K
20	EVDD	Equivalent circuit H
21	P13/TOQ0B2/TIQ00	Equivalent circuit A
22	P14/TOQ0T3/EVTQ0	Equivalent circuit A
23	P15/TOQ0B3/TRGQ0	Equivalent circuit A
24	P16/TOQ00/TIP20	Equivalent circuit A
25	P17/TOP21/TIP21	Equivalent circuit A
26	DDO	Equivalent circuit F
27	DRST	Equivalent circuit F
28	PLLSIN	Equivalent circuit E
29	ANIOO	Equivalent circuit A
30	ANI01	Equivalent circuit A
31	ANI02	Equivalent circuit A
32	ANI03	Equivalent circuit A
33	P70/ANI20	Equivalent circuit A

Table 4-1. Target Interface Connection for V850E/IA4 (100-Pin GF Package) (1/3)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
34	P71/ANI21	Equivalent circuit A
35	P72/ANI22	Equivalent circuit A
36	P73/ANI23	Equivalent circuit A
37	AVDD	Equivalent circuit G
38	AVss	Equivalent circuit J
39	CMPREF	Equivalent circuit A
40	AVss	Equivalent circuit J
41	AVDD	Equivalent circuit G
42	P74/ANI24	Equivalent circuit A
43	P75/ANI25	Equivalent circuit A
44	P76/ANI26	Equivalent circuit A
45	P77/ANI27	Equivalent circuit A
46	ANI10	Equivalent circuit A
47	ANI11	Equivalent circuit A
48	ANI12	Equivalent circuit A
49	ANI13	Equivalent circuit A
50	P00/INTP0/TOQ0OFF	Equivalent circuit A
51	P01/INTP1/TOQ1OFF	Equivalent circuit A
52	P02/INTP2/TOP2OFF	Equivalent circuit A
53	P03/INTP3/TOP3OFF	Equivalent circuit A
54	P04/INTP4/ADTRG0	Equivalent circuit A
55	P05/INTP5/ADTRG1	Equivalent circuit A
56	P06/INTP6	Equivalent circuit A
57	P07/INTP7	Equivalent circuit A
58	Vdd	Equivalent circuit H
59	Vss	Equivalent circuit K
60	P40/SIB0	Equivalent circuit A
61	P41/SOB0	Equivalent circuit A
62	P42/SCKB0	Equivalent circuit A
63	P20/TOQ1T1	Equivalent circuit A
64	P21/TOQ1B1	Equivalent circuit A
65	P22/TOQ1T2	Equivalent circuit A
66	EVdd	Equivalent circuit H

Table 4-1. Target Interface Connection for V850E/IA4 (100-Pin GF Package) (2/3)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
67	EVss	Equivalent circuit K
68	P23/TOQ1B2	Equivalent circuit A
69	P24/TOQ1T3	Equivalent circuit A
70	P25/TOQ1B3	Equivalent circuit A
71	CVDD	Equivalent circuit I
72	X2	Equivalent circuit C
73	X1	Equivalent circuit C
74	CVSS	Equivalent circuit K
75	RESET	Equivalent circuit D
76	P43/TOP00/TIP00	Equivalent circuit A
77	P44/TOP01/TIP01	Equivalent circuit A
78	Vdd	Equivalent circuit H
79	Vss	Equivalent circuit K
80	P30/RXDA0	Equivalent circuit A
81	P31/TXDA0	Equivalent circuit A
82	P32/SIB1/RXDA1	Equivalent circuit A
83	P33/SOB1/TXDA1	Equivalent circuit A
84	P34/SCKB1	Equivalent circuit A
85	P35/TIUD10/TO10	Equivalent circuit A
86	P36/TCUD10	Equivalent circuit A
87	P37/TCLR10	Equivalent circuit A
88	P26/TOQ10	Equivalent circuit A
89	P27/TOP31	Equivalent circuit A
90	PDL0	Equivalent circuit B
91	PDL1	Equivalent circuit B
92	Vdd	Equivalent circuit H
93	Vss	Equivalent circuit K
94	PDL2	Equivalent circuit B
95	PDL3	Equivalent circuit B
96	PDL4	Equivalent circuit B
97	PDL5/FLMD1	Equivalent circuit B
98	PDL6	Equivalent circuit B
99	PDL7	Equivalent circuit B
100	EVss	Equivalent circuit K

Table 4-1. Target Interface Connection for V850E/IA4 (100-Pin GF Package) (3/3)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
1	ANI00	Equivalent circuit A
2	ANI01	Equivalent circuit A
3	ANI02	Equivalent circuit A
4	ANI03	Equivalent circuit A
5	P70/ANI20	Equivalent circuit A
6	P71/ANI21	Equivalent circuit A
7	P72/ANI22	Equivalent circuit A
8	P73/ANI23	Equivalent circuit A
9	AVdd	Equivalent circuit G
10	AVss	Equivalent circuit J
11	CMPREF	Equivalent circuit A
12	AVss	Equivalent circuit J
13	AVdd	Equivalent circuit G
14	P74/ANI24	Equivalent circuit A
15	P75/ANI25	Equivalent circuit A
16	P76/ANI26	Equivalent circuit A
17	P77/ANI27	Equivalent circuit A
18	ANI10	Equivalent circuit A
19	ANI11	Equivalent circuit A
20	ANI12	Equivalent circuit A
21	ANI13	Equivalent circuit A
22	P00/INTP0/TOQ0OFF	Equivalent circuit A
23	P01/INTP1/TOQ1OFF	Equivalent circuit A
24	P02/INTP2/TOP2OFF	Equivalent circuit A
25	P03/INTP3/TOP3OFF	Equivalent circuit A
26	P04/INTP4/ADTRG0	Equivalent circuit A
27	P05/INTP5/ADTRG1	Equivalent circuit A
28	P06/INTP6	Equivalent circuit A
29	P07/INTP7	Equivalent circuit A
30	VDD	Equivalent circuit H
31	Vss	Equivalent circuit K
32	P40/SIB0	Equivalent circuit A
33	P41/SOB0	Equivalent circuit A

Table 4-2. Target Interface Connection for V850E/IA4 (100-Pin GC Package) (1/3)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
34	P42/SCKB0	Equivalent circuit A
35	P20/TOQ1T1	Equivalent circuit A
36	P21/TOQ1B1	Equivalent circuit A
37	P22/TOQ1T2	Equivalent circuit A
38	EVDD	Equivalent circuit H
39	EVss	Equivalent circuit K
40	P23/TOQ1B2	Equivalent circuit A
41	P24/TOQ1T3	Equivalent circuit A
42	P25/TOQ1B3	Equivalent circuit A
43	CVDD	Equivalent circuit I
44	X2	Equivalent circuit C
45	X1	Equivalent circuit C
46	CVss	Equivalent circuit K
47	RESET	Equivalent circuit D
48	P43/TOP00/TIP00	Equivalent circuit A
49	P44/TOP01/TIP01	Equivalent circuit A
50	Vdd	Equivalent circuit H
51	Vss	Equivalent circuit K
52	P30/RXDA0	Equivalent circuit A
53	P31/TXDA0	Equivalent circuit A
54	P32/SIB1/RXDA1	Equivalent circuit A
55	P33/SOB1/TXDA1	Equivalent circuit A
56	P34/SCKB1	Equivalent circuit A
57	P35/TIUD10/TO10	Equivalent circuit A
58	P36/TCUD10	Equivalent circuit A
59	P37/TCLR10	Equivalent circuit A
60	P26/TOQ10	Equivalent circuit A
61	P27/TOP31	Equivalent circuit A
62	PDL0	Equivalent circuit B
63	PDL1	Equivalent circuit B
64	Vdd	Equivalent circuit H
65	Vss	Equivalent circuit K
66	PDL2	Equivalent circuit B
67	PDL3	Equivalent circuit B

Table 4-2. Target Interface Connection for V850E/IA4 (100-Pin GC Package) (2/3)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
68	PDL4	Equivalent circuit B
69	PDL5/FLMD1	Equivalent circuit B
70	PDL6	Equivalent circuit B
71	PDL7	Equivalent circuit B
72	EVss	Equivalent circuit K
73	EVdd	Equivalent circuit H
74	PDL8	Equivalent circuit B
75	PDL9	Equivalent circuit B
76	PDL10	Equivalent circuit B
77	PDL11	Equivalent circuit B
78	PDL12	Equivalent circuit B
79	PDL13	Equivalent circuit B
80	PDL14	Equivalent circuit B
81	PDL15	Equivalent circuit B
82	P50/DDI/TIUD11/TO11	Equivalent circuit A
83	P51/DCK/TCUD11	Equivalent circuit A
84	P52/DMS/TCLR11	Equivalent circuit A
85	Vss	Equivalent circuit K
86	Vdd	Equivalent circuit H
87	IC1/FLMD0	Equivalent circuit F
88	P10/TOQ0T1/TIQ01/TOQ01	Equivalent circuit A
89	P11/TOQ0B1/TIQ02/TOQ02	Equivalent circuit A
90	P12/TOQ0T2/TIQ03/TOQ03	Equivalent circuit A
91	EVss	Equivalent circuit K
92	EVdd	Equivalent circuit H
93	P13/TOQ0B2/TIQ00	Equivalent circuit A
94	P14/TOQ0T3/EVTQ0	Equivalent circuit A
95	P15/TOQ0B3/TRGQ0	Equivalent circuit A
96	P16/TOQ00/TIP20	Equivalent circuit A
97	P17/TOP21/TIP21	Equivalent circuit A
98	DDO	Equivalent circuit F
99	DRST	Equivalent circuit F
100	PLLSIN	Equivalent circuit E

Table 4-2. Target Interface Connection for V850E/IA4 (100-Pin GC Package) (3/3)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
1	ANIOO	Equivalent circuit A
2	ANI01	Equivalent circuit A
3	P71/ANI21	Equivalent circuit A
4	P72/ANI22	Equivalent circuit A
5	P73/ANI23	Equivalent circuit A
6	AVDD	Equivalent circuit G
7	AVss	Equivalent circuit J
8	CMPREF	Equivalent circuit A
9	AVss	Equivalent circuit J
10	AVDD	Equivalent circuit G
11	P74/ANI24	Equivalent circuit A
12	P75/ANI25	Equivalent circuit A
13	ANI10	Equivalent circuit A
14	ANI11	Equivalent circuit A
15	ANI12	Equivalent circuit A
16	ANI13	Equivalent circuit A
17	P00/INTP0/TOQ0OFF	Equivalent circuit A
18	P02/INTP2/TOP2OFF	Equivalent circuit A
19	P03/INTP3/TOP3OFF	Equivalent circuit A
20	P70/ANI20	Equivalent circuit A
21	P04/INTP4/ADTRG0	Equivalent circuit A
22	P05/INTP5/ADTRG1	Equivalent circuit A
23	P06/INTP6	Equivalent circuit A
24	P07/INTP7	Equivalent circuit A
25	VDD	Equivalent circuit H
26	Vss	Equivalent circuit F
27	P40/SIB0	Equivalent circuit A
28	P41/SOB0	Equivalent circuit A
29	P42/SCKB0	Equivalent circuit A
30	EVDD	Equivalent circuit H
31	EVss	Equivalent circuit F
32	CVDD	Equivalent circuit I
33	X2	Equivalent circuit C
34	X1	Equivalent circuit C
35	CVss	Equivalent circuit K
36	RESET	Equivalent circuit D
37	P43/TOP00/TIP00	Equivalent circuit A
38	P44/TOP01/TIP01	Equivalent circuit A
39	Vss	Equivalent circuit F
40	VDD	Equivalent circuit H

Table 4-3. Target Interface Connection for V850E/IA3 (80-Pin GC Package) (1/2)

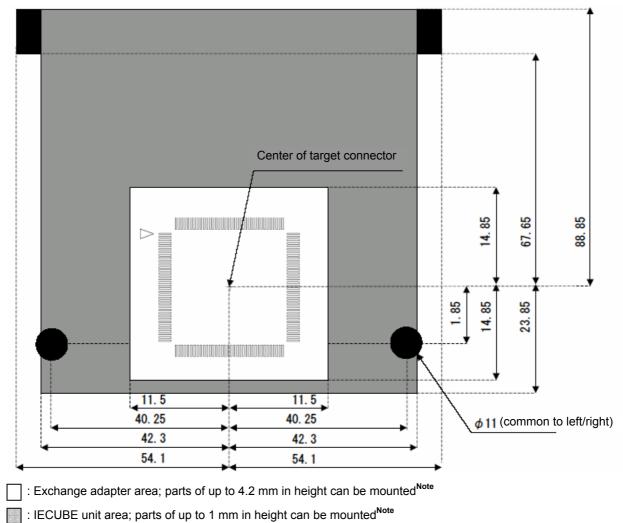
Pin No.	Target Interface Name	Connection in In-Circuit Emulator
41	PDL9	Equivalent circuit B
42	PDL8	Equivalent circuit B
43	PDL7	Equivalent circuit B
44	PDL6	Equivalent circuit B
45	PDL5/FLMD1	Equivalent circuit B
46	PDL4	Equivalent circuit B
47	PDL3	Equivalent circuit B
48	PDL2	Equivalent circuit B
49	Vss	Equivalent circuit F
50	Vdd	Equivalent circuit H
51	PDL1	Equivalent circuit B
52	PDL0	Equivalent circuit B
53	P37/TCLR10	Equivalent circuit A
54	P36/TCUD10	Equivalent circuit A
55	P35/TIUD10/TO10	Equivalent circuit A
56	P34/SCKB1	Equivalent circuit A
57	P33/SOB1/TXDA1	Equivalent circuit A
58	P32/SIB1/RXDA1	Equivalent circuit A
59	P31/TXDA0	Equivalent circuit A
60	P30/RXDA0	Equivalent circuit A
61	PDL10	Equivalent circuit B
62	PDL12	Equivalent circuit B
63	PDL12	Equivalent circuit B
64	PDL13	Equivalent circuit B
65	PDL14	Equivalent circuit B
66	PDL15	Equivalent circuit B
67	Vss	Equivalent circuit F
68	VDD	Equivalent circuit H
69	IC1/FLMD0	Equivalent circuit F
70	P10/TOQ0T1/TIQ01/TOQ01	Equivalent circuit A
71	P11/TOQ0B1/TIQ02/TOQ02	Equivalent circuit A
72	P12/TOQ0T2/TIQ03/TOQ03	Equivalent circuit A
73	EVss	Equivalent circuit F
74	EVDD	Equivalent circuit H
75	P13/TOQ0B2/TIQ00	Equivalent circuit A
76	P14/TOQ0T3/EVTQ0	Equivalent circuit A
77	P15/TOQ0B3/TRGQ0	Equivalent circuit A
78	P16/TOQ00/TIP20	Equivalent circuit A
79	P17/TOP21/TIP21	Equivalent circuit A
80	PLLSIN	Equivalent circuit E

Table 4-3. Target Interface Connection for V850E/IA3 (80-Pin GC Package) (2/2)

Pin No.	Target Interface Name	Connection in In-Circuit Emulator
1	ANI00	Equivalent circuit A
2	ANI01	Equivalent circuit A
3	ANI02	Equivalent circuit A
4	ANI03	Equivalent circuit A
5	RESET	Equivalent circuit D
6	X1	Equivalent circuit C
7	X2	Equivalent circuit C
8	Vss	Equivalent circuit K
9	Vdd	Equivalent circuit H
10	REGC	Equivalent circuit F
11	P06/INTP6	Equivalent circuit A
12	P05/INTP5/ADTRG1	Equivalent circuit A
13	P04/INTP4/ADTRG0	Equivalent circuit A
14	P03/INTP3/TOP3OFF	Equivalent circuit A
15	P02/INTP2/TOP2OFF	Equivalent circuit A
16	P01/INTP1/TOQ1OFF	Equivalent circuit A
17	P00/INTP0	Equivalent circuit A
18	P17/TOP21/TIP21	Equivalent circuit A
19	P16 (CLMER)/TOQ00 (CLMER)/TIP20	Equivalent circuit A
20	P14/EVTQ0	Equivalent circuit A
21	P13/TIQ00	Equivalent circuit A
22	P12/TIQ03/TOQ03	Equivalent circuit A
23	P11/TIQ02/TOQ02	Equivalent circuit A
24	P10/TIQ01/TOQ01	Equivalent circuit A
25	FLMD0/IC	Equivalent circuit F
26	EVDD	Equivalent circuit H
27	EVss	Equivalent circuit K
28	PDL7	Equivalent circuit B
29	PDL6	Equivalent circuit B
30	PDL5/FLMD1	Equivalent circuit B
31	PDL4	Equivalent circuit B
32	PDL3	Equivalent circuit B

Table 4-4. Target Interface Connection for V850ES/IK1 (64-Pin GC Package) (1/2)

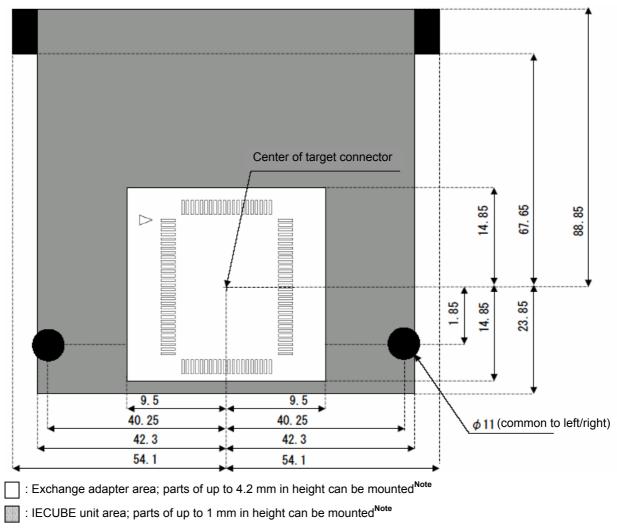
Pin No.	Target Interface Name	Connection in In-Circuit Emulator
33	PDL2	Equivalent circuit B
34	PDL1	Equivalent circuit B
35	PDL0	Equivalent circuit B
36	P44/TOP01/TIP01	Equivalent circuit A
37	P43/TOP00/TIP00	Equivalent circuit A
38	P42/SCKB0	Equivalent circuit A
39	P41/SOB0	Equivalent circuit A
40	P40/SIB0	Equivalent circuit A
41	P33/TXDA1	Equivalent circuit A
42	P32/RXDA1	Equivalent circuit A
43	P31/TXDA0	Equivalent circuit A
44	P30/RXDA0	Equivalent circuit A
45	P27/TOP31	Equivalent circuit A
46	P26/TOQ10	Equivalent circuit A
47	EVDD	Equivalent circuit H
48	EVss	Equivalent circuit K
49	P25/TOQ1B3	Equivalent circuit A
50	P24/TOQ1T3	Equivalent circuit A
51	P23/TOQ1B2	Equivalent circuit A
52	P22/TOQ1T2	Equivalent circuit A
53	P21/TOQ1B1	Equivalent circuit A
54	P20/TOQ1T1	Equivalent circuit A
55	ANI13	Equivalent circuit A
56	ANI12	Equivalent circuit A
57	ANI11	Equivalent circuit A
58	ANI10	Equivalent circuit A
59	AVREF	Equivalent circuit G
60	AVDD	Equivalent circuit G
61	AVss	Equivalent circuit J
62	AVss	Equivalent circuit J
63	AVDD	Equivalent circuit G
64	AVREF	Equivalent circuit G


Table 4-4. Target Interface Connection for V850ES/IK1 (64-Pin GC Package) (2/2)

CHAPTER 5 NOTES ON TARGET SYSTEM DESIGN

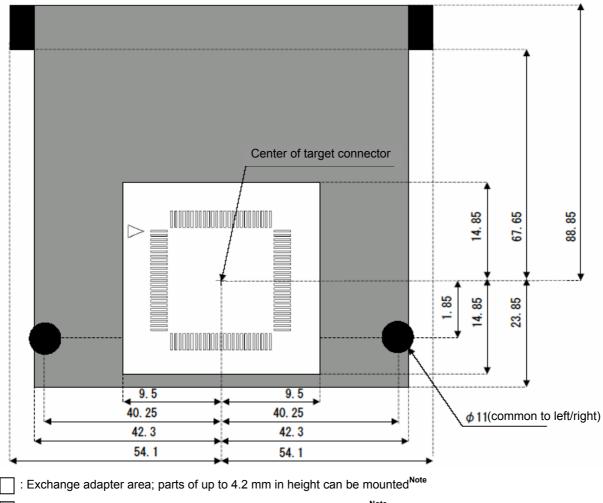
This chapter explains notes on target system design, including areas in which parts should not be mounted on the target system and the area that has a height restriction on the mounting parts.

5.1 When Extension Probe Is Not Used


5.1.1 V850E/IA4 (100-pin GF package)

: IECUBE spacer area; mounting parts prohibited

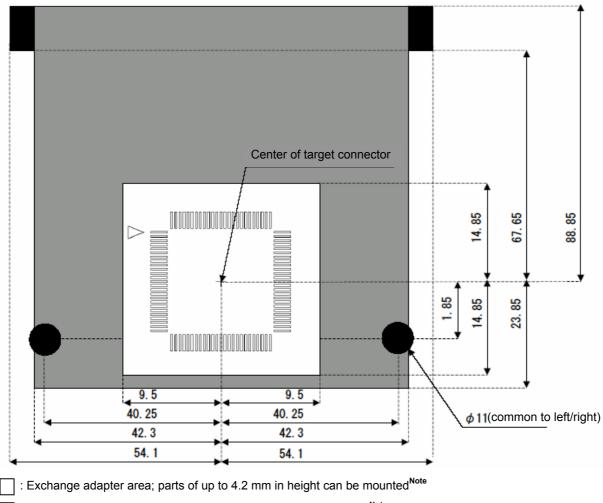
Figure 5-1-1. V850E/IA4 (100-Pin GF Package)


5.1.2 V850E/IA4 (100-pin GC package)

: IECUBE spacer area; mounting parts prohibited

Figure 5-1-2. V850E/IA4 (100-Pin GC Package)

5.1.3 V850E/IA3 (80-pin GC package)

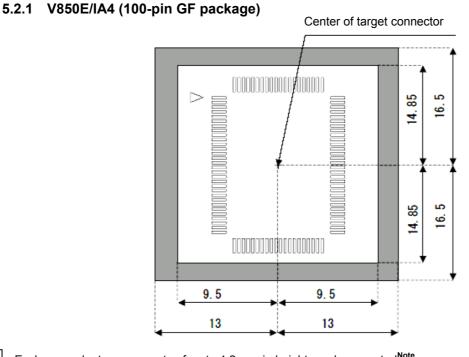


: IECUBE unit area; parts of up to 1 mm in height can be mounted Note

: IECUBE spacer area; mounting parts prohibited

Figure 5-1-3. V850E/IA3 (80-Pin GC Package)

5.1.4 V850ES/IK1 (64-pin GC package)



: IECUBE unit area; parts of up to 1 mm in height can be mounted Note

: IECUBE spacer area; mounting parts prohibited

Figure 5-1-4. V850ES/IK1 (64-Pin GC Package)

5.2 When Extension Probe Is Used

____ : Exchange adapter area; parts of up to 4.2 mm in height can be mounted^{Note}

: Extension probe top area; parts of up to 13.2 mm in height can be mounted^{Note}

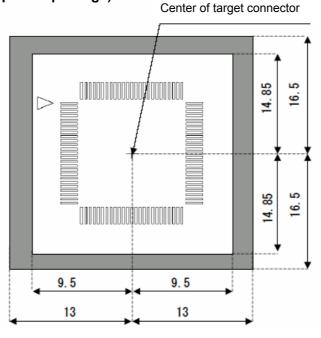
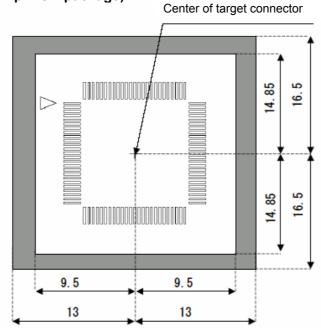

Note The height can be adjusted using the spacer adapter (can increase by 5.6 mm per unit)

Figure 5-2-1. V850E/IA4 (100-Pin GF Package)

5.2.2 V850E/IA4 (100-pin GC package) Center of target connector \triangleright 85 2 16. 4 ഹ 8 16. 4 9.5 9.5 13 13 : Exchange adapter area; parts of up to 4.2 mm in height can be mounted^{Note} Extension probe connector area; parts of up to 13.2 mm in height can be mounted^{Note} Note The height can be adjusted using the spacer adapter (can increase by 5.6 mm per unit)

Figure 5-2-2. V850E/IA (100-Pin GC Package)

5.2.3 V850E/IA3 (80-pin GC package)



: Exchange adapter area; parts of up to 4.2 mm in height can be mounted^{Note}

Extension probe connector area; parts of up to 13.2 mm in height can be mounted^{Note}

Note The height can be adjusted using the spacer adapter (can increase by 5.6 mm per unit)

Figure 5-2-3. V850E/IA3 (80-Pin GF Package)

5.2.4 V850ES/IK1 (64-pin GC package)

: Exchange adapter area; parts of up to 4.2 mm in height can be mounted^{Note}

Extension probe connector area; parts of up to 13.2 mm in height can be mounted^{Note}

Note The height can be adjusted using the spacer adapter (can increase by 5.6 mm per unit)

Figure 5-2-4. V850ES/IK1 (64-Pin GF Package)

6.1 Target Connector

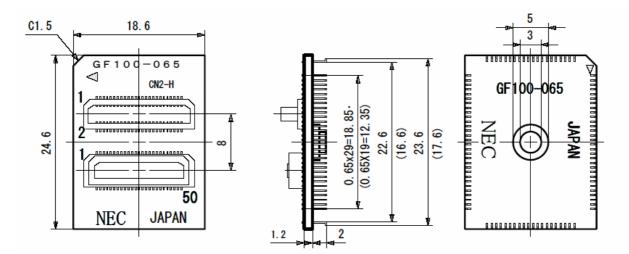


Figure 6-1-1. Target Connector for V850E/IA4 (100-Pin GF Package)

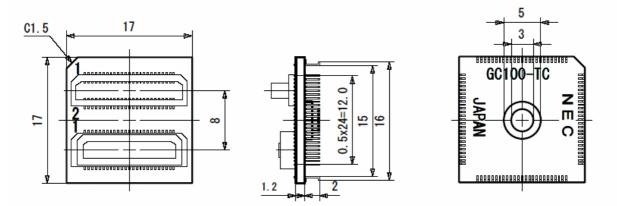


Figure 6-1-2. Target Connector for V850E/IA4 (100-Pin GC Package)

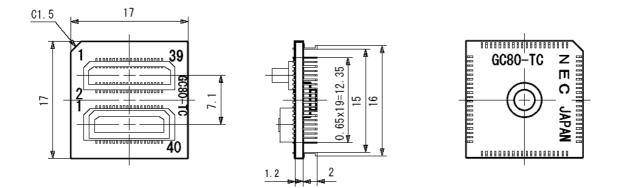


Figure 6-1-3. Target Connector for V850E/IA3 (80-Pin GC Package)

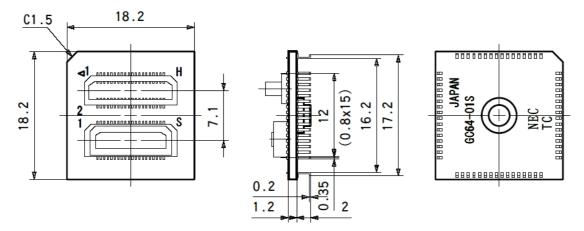


Figure 6-1-4. Target Connector for V850SE/IK1 (64-Pin GC Package)

6.2 Foot Patterns of Target Connectors

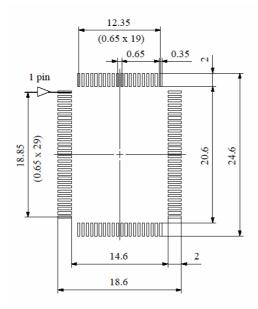


Figure 6-2-1. Foot Pattern of Target Connector for V850E/IA4 (100-Pin GF Package)

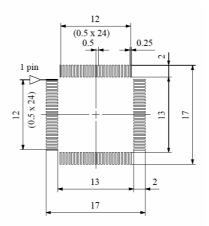


Figure 6-2-2. Foot Pattern of Target Connector for V850E/IA4 (100-Pin GC Package)

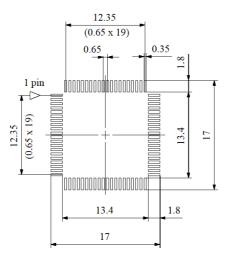


Figure 6-2-3. Foot Pattern of Target Connector for V850E/IA3 (80-Pin GC Package)

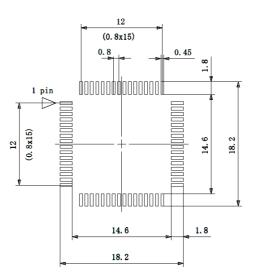


Figure 6-2-4. Foot Pattern of Target Connector for V850ES/IK1 (64-Pin GC Package)

6.3 Exchange Adapter

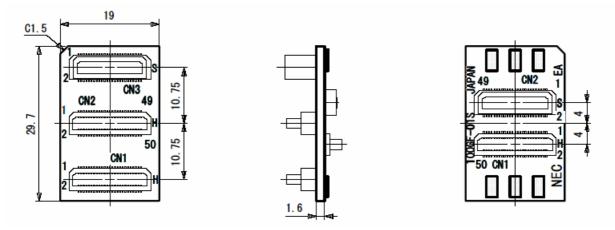
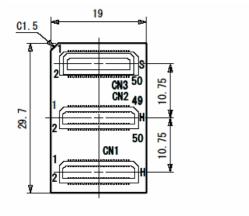
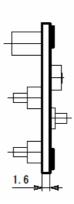




Figure 6-3-1. Exchange Adapter for V850E/IA4 (100-Pin GF Package)

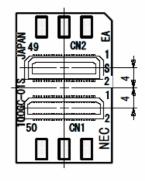


Figure 6-3-2. Exchange Adapter for V850E/IA4 (100-Pin GC Package)

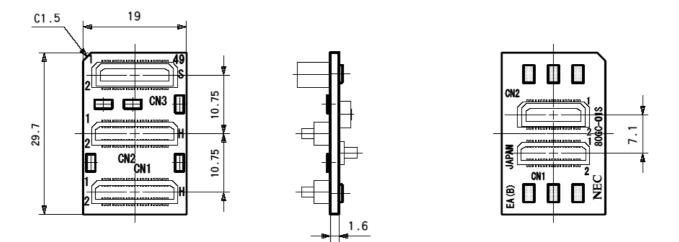


Figure 6-3-3. Exchange Adapter for V850E/IA3 (80-Pin GC Package)

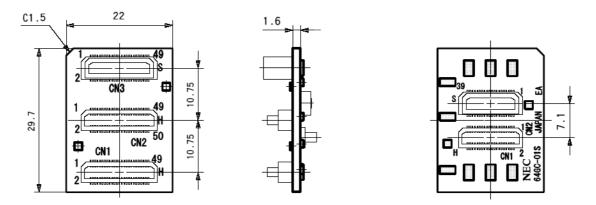


Figure 6-3-4. Exchange Adapter for V850ES/IK1 (64-Pin GC Package)

6.4 Mounting Adapter

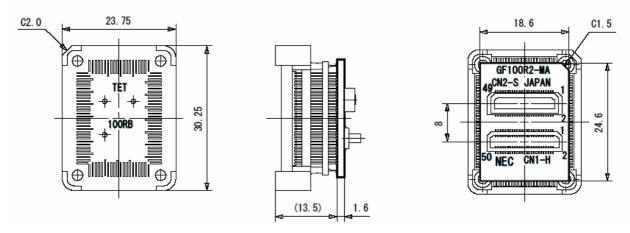


Figure 6-4-1. Mounting Adapter for V850E/IA4 (100-Pin GF Package)

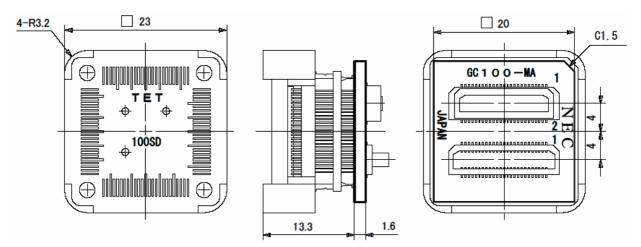


Figure 6-4-2. Mount Adapter for V850E/IA4 (100-Pin GC Package)

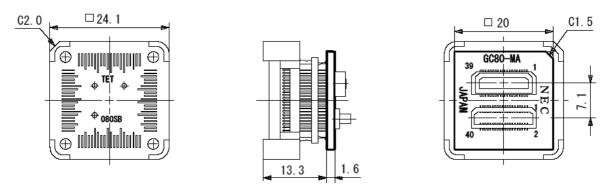


Figure 6-4-3. Mount Adapter for V850E/IA3 (80-Pin GC Package)

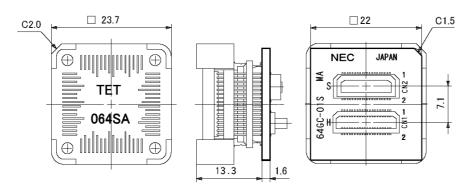


Figure 6-4-4. Mount Adapter for V850EA/IK1 (64-Pin GC Package)

6.5 Check Pin Adapter

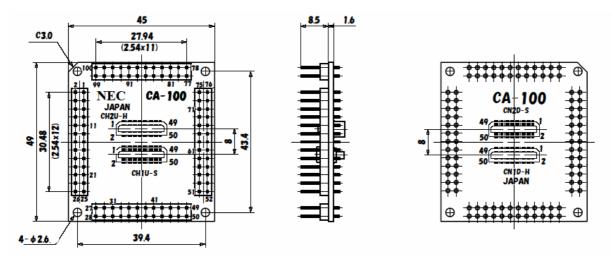


Figure 6-5-1. Check Pin Adapter for V850E/IA4

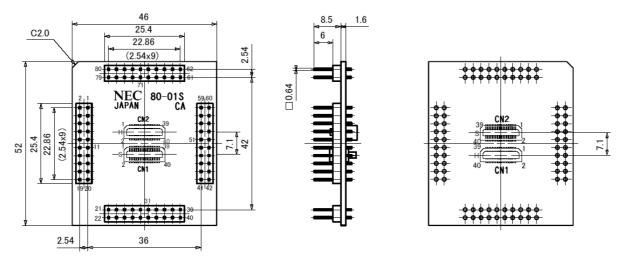
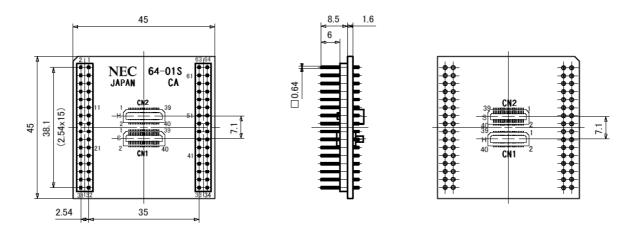
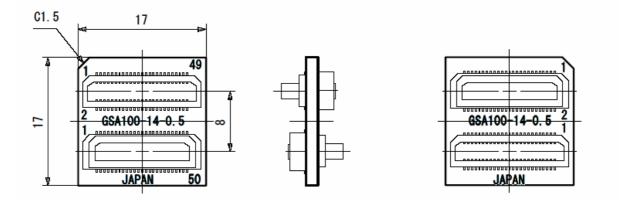
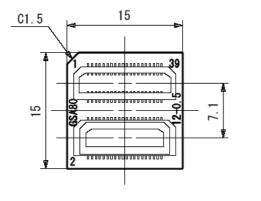
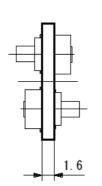


Figure 6-5-2. Check Pin Adapter for V850E/IA3


Figure 6-5-3. Check Pin Adapter for V850ES/IK1

6.6 Spacer Adapter

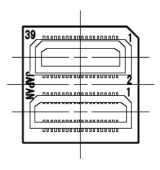


Figure 6-6-2. Spacer Adapter for V850E/IA3

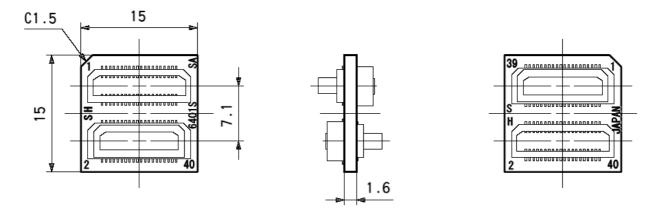


Figure 6-6-3. Spacer Adapter for V850ES/IK1

6.7 Extension Probe

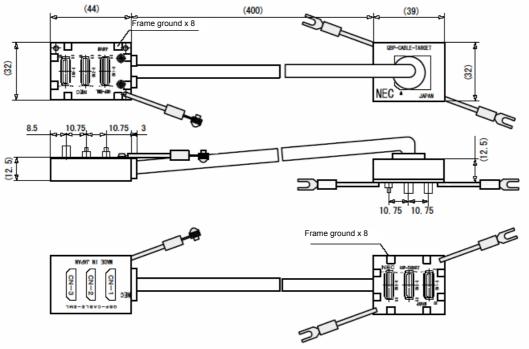


Figure 6-7-1. Extension Probe